

Project 2 – Reversi

Assignment: ​Project 2 – Reversi
Due Date:
Design Document:​ Friday, April 12th, 2019 by 11:59:59 PM
Project:​ Friday, April 19th, 2019 by 11:59:59 PM
Value:​ 80 points

Collaboration:​ For Project 2, ​collaboration is not allowed​ – you must work
individually. You may still come to office hours for help, but you may not work
with any other CMSC 201 students.

Make sure that you have a complete file header comment at the top of ​each
file, and that all of the information is correctly ​filled out​.

File: FILENAME.py

Author: YOUR NAME

Date: THE DATE

Section: YOUR DISCUSSION SECTION NUMBER

E-mail: YOUR_EMAIL@umbc.edu

Description:

DESCRIPTION OF WHAT THE PROGRAM DOES

Change Log

4/8/19:
● Formatting: Added description of supplied printBoard() with

instructions on where to find it.
● Input validation: Added an entry requiring that a row and

column be found from user input
● Change to sample output: some small changes to the

accompanying sample output

CMSC 201 – Computer Science I for Majors Page 1

For Project 2 you will have to turn in a “design document” in addition to the
actual code. The design document is intended to help you practice deliberate
construction of your program and how it will work, rather than coding as you
go along, or starting without a plan.

Instructions
For this project, you will be creating a single program, but one that is bigger in
size and complexity than any individual homework problem. This assignment
will focus on manipulating lists, calling functions, and handling mutability
appropriately.

The design for Project 2 is entirely up to you – suggestions are provided
within the project description, but you are not required to use them.

At the end, your Project 2 file must run without any errors.
It must also be called proj2.py (case sensitive).

Additional Instructions – Creating the proj2 Directory
During the semester, you’ll want to keep your different Python programs
organized, organizing them in appropriately named folders (also known as
directories).

You should create a directory in which to store your Project 2 files. We
recommend calling it ​proj2​, and creating it inside a newly-created directory
called​ Projects​ inside the​ 201 ​directory.

If you need help on how to do this, refer back to the detailed instructions in
Homework 1.

CMSC 201 – Computer Science I for Majors Page 2

Objective
Project 2 is designed to give you practice with two-dimensional lists,
mutability, and creating and calling functions. You’ll need to use practically
everything you’ve learned so far, and will need to do some serious thinking
about how all of the pieces you need to create should fit together.

Task
For this project, you will be coding a very simplified game of Reversi, in which
there is only one player, and the opponent is a computer player that follows a
simple naive strategy. The game is played on an 8x8 board.

Coding Standards
Prior to this assignment, ​you should be familiar with the entirety of the
Coding Standards​, available on Blackboard under “Assignments” and linked
on the course website at the top of the “Assignments” page.

You should be commenting your code, and using constants in your
code (not magic numbers or strings).

Any strings with a meaning should be constants!
Any numbers other than 0 or 1 are magic numbers!

You will ​lose major points​ if you do not follow the 201 coding standards.

If you have questions about commenting, whitespace, or any other coding
standards, please come to office hours.

CMSC 201 – Computer Science I for Majors Page 3

Additional Specifications
For this assignment, you must create and call ​at least eight individual
functions​, not including​ main()​. All other design decisions are up to you.

You may ​not​ import any libraries or use any library functions!​ Doing so
will lose you a ​very​ large number of points.

Input Validation
For this project, we will require that you validate input from the user. You can
assume that the user will enter the right ​type​ of input, but not that they will
enter a ​correct​ value. In other words, a user will always give an integer when
you expect one, but it may be a negative or otherwise invalid value.

You will need to validate the following things:

● Getting the user’s choice for each move, both row and column
o Rows and columns must both be between 0 and 7, inclusive

● The player’s move must be a LEGAL Reversi move for the current
board

● The input must contain both a row and column

Formatting
When printed, ​your board must appear ​exactly​ like the one shown​ in the
sample output, including the row and column headings, and the dividing lines.

You can look at the sample output to see what a board should look like, but a
description has also been provided below with exact character counts and
descriptions.

The board shown in the sample output uses underscores for empty spaces,
and vertical bars (​i.e.​, pipes) for the vertical dividing lines. Each square is one
character wide, and contains an uppercase X for a player move, an O for a
computer move, and an underscore for an empty space. The row and
column headings follow this same format, but with a number for the row or
column index. The final column label is not followed by a pipe.

CMSC 201 – Computer Science I for Majors Page 4

To this end, we have provided a​ printBoard() ​function for you to use,
which will print the board exactly as shown in the sample output. You are not
required to use this function, but we recommend that you do, as it has been
tested and works correctly. You are also welcome to modify it to suit your
needs.

The code for the function is available as as a separate file under
“Assignments” on Blackboard, and is called “​printBoard.txt​”.

You can also get it from Dr. Gibson’s pub folder using the following
command:
cp /afs/umbc.edu/users/k/k/k38/pub/cs201/printBoard.txt .

CMSC 201 – Computer Science I for Majors Page 5

Details
For this project, you will be coding a simplified game of Reversi. The board
for the game is an 8x8 grid. Players take turns placing X’s and O’s into blank
spaces on the board.

The Setup
The board is set up with four pieces already played in the middle:
Current board state:

_|0|1|2|3|4|5|6|7

0|_|_|_|_|_|_|_|_|

1|_|_|_|_|_|_|_|_|

2|_|_|_|_|_|_|_|_|

3|_|_|_|X|O|_|_|_|

4|_|_|_|O|X|_|_|_|

5|_|_|_|_|_|_|_|_|

6|_|_|_|_|_|_|_|_|

7|_|_|_|_|_|_|_|_|

BE SURE THAT YOU DON’T GET THE X's AND O's BACKWARDS!

Taking a move
Before the player’s turn, you will display all of their valid moves, and then
prompt them for a move. They will give the move as two integers with a
space in between. If the integers are NOT valid moves, you will reprompt
them.

A valid Reversi move for the player (placing pieces represented by X) is
defined as:

● Horizontally or vertically adjacent to an O with the following properties
○ The adjacent O must be in a line O’s of length at least one
○ The end of the line of O’s must terminate in an X

CMSC 201 – Computer Science I for Majors Page 6

More simply put, an X must be placed so that O’s are “sandwiched” between
the new X and an existing one. An example board position:

Current board state:

_|0|1|2|3|4|5|6|7

0|_|_|_|_|_|_|_|_|

1|_|_|_|_|_|_|_|_|

2|_|_|_|O|_|_|_|_|

3|_|_|_|O|X|X|_|_|

4|_|_|_|O|X|_|_|_|

5|_|_|_|_|_|_|_|_|

6|_|_|_|_|_|_|_|_|

7|_|_|_|_|_|_|_|_|

Valid moves are: [[3, 2], [4, 2]]

Seasoned Reversi players will notice that we have not mentioned diagonals.
YOU ​MUST​ IGNORE DIAGONAL PLAYS FOR THIS PROJECT​. Projects
that include diagonal plays will lose a ​major amount​ of points.

After the move is placed, all of the “sandwiched pieces” for the opponent are
“flipped” to the control of the player that just moved. More precisely:

If a piece is played, it must be next to one or more sets of enemy pieces
that are in a line between the newly played piece and another friendly
piece. All of those enemy pieces are “flipped” to be controlled by the
player who just played a piece.

IMPORTANT NOTE: ​ALL​ pieces that should be flipped, must be flipped, in
all directions (up, down, left, right) from the placed piece.

CMSC 201 – Computer Science I for Majors Page 7

Example (flipped pieces in red: [3, 2], [2, 3])

_|0|1|2|3|4|5|6|7

0|_|_|_|_|_|_|_|_|

1|_|_|_|_|X|_|_|_|

2|_|_|_|O|X|O|_|_|

3|_|O|O|O|X|O|O|_|

4|_|O|X|X|X|_|_|_|

5|_|O|O|_|_|_|_|_|

6|_|_|_|_|_|_|_|_|

7|_|_|_|_|_|_|_|_|

 ​-User plays 2 2->

_|0|1|2|3|4|5|6|7

0|_|_|_|_|_|_|_|_|

1|_|_|_|_|X|_|_|_|

2|_|_|X|​X​|X|O|_|_|
3|_|O|​X​|O|X|O|O|_|
4|_|O|X|X|X|_|_|_|

5|_|O|O|_|_|_|_|_|

6|_|_|_|_|_|_|_|_|

7|_|_|_|_|_|_|_|_|

Artificial Unintelligence
The computer player will always make the legal move closest to the top. If
there are two or more legal moves in the same row, the computer prefers the
move to the left. Your computer player ​MUST​ play this way in order to get full
credit for the assignment.

Why so dumb, you may wonder? Having the computer play moves that
follow a simple pattern let us give you more useful sample outputs than if our
computer played random moves, or moves based on an algorithm of any
level of sophistication.

If you love Reversi, and want to make a smarter computer player, do it
AFTER you submit your assignment.

Turn flow
A turn is comprised of the following:

1. The board is displayed.
2. The user is prompted for a move
3. The user inputs the move

CMSC 201 – Computer Science I for Majors Page 8

4. The computer’s move is printed to the player (but NOT the board).

Steps 1-4 are repeated until the game ends. Do not print the board state
before the computer plays. 1

End of the Game
The game ends when the player whose turn it is has no legal move to make.
This includes the computer player! Again, this deviates from standard
Reversi rules, so be sure that you implement accordingly to this project
description.

Hints and Advice
It would be a good idea to:

● Store your board in a 2D list (make sure you don’t mix up column and row!)
● Remember that lists are passed by reference, and that any in-place

changes to a list made within a function remain when control is returned to
the calling function

● Use constants for the different characters used on the board, as well as
any other numbers or strings you deem necessary

● Have a function called ​printBoard()​ that takes in the current board as a
parameter and prints out the board’s contents

● When printing the board, remember to make use of either concatenation or
the​ end="" ​parameter in the​ print() ​function, to control when line
breaks and spaces are printed to the screen.

TIP​: This would be a ​very​ good time to use incremental development!
Incremental development is when you are only working on a small piece of
the code at a time, and testing that the piece of code works before moving on
to the next piece. This makes it a lot easier to fix any mistakes.

1 You are welcome to print the board after the player makes their move as a part of your debugging, but remove it
before submitting. As a “final product”, having a lot of boards displayed can be confusing to the player.

CMSC 201 – Computer Science I for Majors Page 9

Project
The project is worth a total of 80 points. Of those points 10 will be based on
your design document, 10 will be based on following the coding standards,
and the other 60 will be based on the functionality and completeness of your
project.

Design Document
The design document will ensure that you begin seriously thinking about your
project early on. This will not only give you important experience doing design
work, but will help you gauge the number of hours you'll need to set aside to
be able to complete the project. ​Your design document must be called
design2.txt.

For Project 2, you are creating the design entirely on your own.
You ​may NOT work with another student​ to “brainstorm” a solution or
discuss any general approaches or requirements. If you need assistance
with the design document, come to office hours.

Your design document must have four separate parts:

1. A file header, similar to those for your assignments
2. Constants

a. A list of all the constants your program will need, including a short
comment describing what each “group” of constants is for (​e.g.,
menu options, meaning of indexes, etc.)

3. Function headers
a. A complete function header comment for each function you plan

to create, including the name, description, parameters, and return
value.

4. Pseudocode for main()
a. A brief but descriptive breakdown of the steps your main()

function will take to completely solve the problem; note function
calls under the relevant comment (if applicable)

Your design can follow the same general format as the design for Project 1.

CMSC 201 – Computer Science I for Majors Page 10

Your ​design2.txt​ file will be compared to the ​proj2.py​ file that you
submit. Minor changes to the design are allowed. A minor change might be
the addition of another function, or a small change to​ main()​.

Major changes between the design and your project will lose you points. This
would indicate that you didn't give sufficient thought to your design.
(If your submitted design doesn’t work, it is generally better to lose the points
on the design, and to have a functional program, rather than turning in a
broken program that follows the design. The decision is ultimately up to you.)

To submit your design document, use

linux1[4]% submit cs201 PROJ2_DESIGN design2.txt

Submitting design2.txt...OK

linux1[5]% ​█

Sample Output
The sample output is available as a separate file under “Assignments” on
Blackboard, and is called “sample2.txt”.

(Yours does not have to match the sample output exactly, but it should be
similar.)

CMSC 201 – Computer Science I for Majors Page 11

Submitting

Once your​ ​proj2.py​ ​or​ ​design2.txt​ ​file is complete, it is time to turn it
in with the​ ​submit​ ​command. (You may also turn the design or project in
multiple times, as you reach new milestones or complete each piece. To do
so, run​ ​submit​ ​as normal.)

To submit your ​design​ file (which is due Friday, April 12th, 2019 by 11:59:59
PM), use the command:

linux1[4]% submit cs201 PROJ2_DESIGN design2.txt

Submitting design2.txt...OK

linux1[5]% ​█

To submit your ​project​ file (which is due Friday, April 19th, 2019 by 11:59:59
PM), use the command:

linux1[4]% submit cs201 PROJ2 proj2.py

Submitting proj2.py...OK

linux1[5]% ​█

If you don’t get a confirmation like the one above, check that you have not
made any typos or errors in the command.

You can check that your homework was submitted by following the directions
in Homework 0. Double-check that you submitted your homework correctly,
since ​an empty file will result in a grade of zero for this assignment.

CMSC 201 – Computer Science I for Majors Page 12

